
CODeDOC II

Christiane Paul 

As part of the CODE exhibition accompanying this year’s festival, Ars Electronica invited 
me to curate a second installment of the online exhibition CODeDOC that I originally 
organized for the Whitney Museum of American Art’s artport, a website designed as a 
portal to netart. CODeDOC, which launched in September 2002, was conceived to 
explore the relationship between the underlying code of software art and its results. A 
dozen software artists were invited to code a specific assignment—“connect and move 
three points in space”—in a language of their choice (Java, C, Visual Basic, Lingo, Perl) 
and were asked to exchange the code with each other for comments. The presentation 
strategy of CODeDOC deliberately deviates from the ways in which viewers usually 
experience a piece of software art, which commonly presents itself to the audience as 
executed code—the results of written instructions. In CODeDOC, the viewing experience 
is closer to the artist’s creation process: what the audience encounters first is a page 
with the written code, from which they can launch its executed results. Since the 
assignment imposed substantial restrictions in format and file size, the contributed 
projects can’t necessarily be seen as fully developed works; rather, they are comparable 
to small studies and sketches that capture an artist’s approach.

Many of the prominent international practitioners in the field of software art could not 
participate in the first version of CODeDOC since the Whitney Museum is, by its 
mission, devoted to American artists (citizens and artists living and working in the US). 



CODeDOC presents a welcome opportunity to close that gap and widen the scope of the 
project. The eight artists/teams who were invited to contribute to the second installment 
and code the assignment—Ed Burton, epidemiC, Graham Harwood, Jaromil, Annja 
Krautgasser & Rainer Mandl, Joan Leandre, Antoine Schmitt and John F. Simon, Jr.—are 
mostly non-American. Some other artists who would have been obvious candidates for 
this project were not invited because they were already involved in other parts of the 
Ars Electronica Festival or exhibition. My special thanks go to Andreas Broeckmann for 
his input and suggestions in the selection process of the artists.

From its inception, CODeDOC was intended as a process-oriented experiment rather 
than an exhibition meant to make a specific statement or offer a certain point of view. 
Ideally, I wanted to raise questions about software art as artistic practice, and neither 
the outcome nor the reception of this project were easily predictable for me. One intent 
of the project certainly was to demystify the notion of code as a “mysterious,” hidden 
driving force and to reveal the code to the viewer. Among the questions that seemed 
important to address or clarify were the following: does the term software art itself 
describe a certain form of aesthetics? Do “signature,” “voice,” and aesthetics of an 
artist manifest themselves equally in the written code and its executed results? Will 
reading the source code enhance the perception of the work? Does it in fact add 
anything at all or just create an emphasis on “technicalities” that is unnecessary, 
alienating, and obscures the work? How exactly could one define the relationship 
between the back end of code and its results?

The attempt to provide detailed answers to all these questions would be beyond the 
scope of this introduction, and I just want to make some general comments and leave it 
up to the CODeDOC II projects themselves, as well as the discussions surrounding them, 
to offer further perspectives on these issues.

If one explores the body of work that each of the CODeDOC II participants has created 
over the years, it seems obvious that the label software art is a lowest common 
denominator for a formal description of their artistic practice rather than a term that 
describes specific aesthetics. The artists’ works themselves cover a broad spectrum of 
individual approaches. The works of epidemiC, for example—which include AntiMafia, a 
Windowsbased program for the co-ordination of associative actions, as well as the 
infamous biennale.py virus created for the 49th Venice Biennale (in collaboration with 
0100101110101101.ORG)—are focused more on activism and the notion of software as 
cultural production. Ed Burton’s Sodaplay and Sodaconstructor, which in the meantime 
have achieved cult status, explore the conceptual possibilities of “handcrafted” virtual 
robots as well as masses and their kinetic energy. Grahame Harwood’s work has ranged 
from “pure” Perl poetry to software creation and narrative projects, such as the CD-ROM 
Rehearsal of Memory—which creates its interface out of a collage of the skins of the 
inmates and staff of Ashworth Hospital Authority—and the Web project Uncomfortable 
Proximity, commissioned by the Tate Museum, which reproduced the Tate website’s 
layout, logos, and design, to tell a “different” history of the British art system. 
Compared to the former examples, Antoine Schmitt's works are far more visually 
oriented studies of the “behaviours” of forms in time and space.

While one might assume that an artist's approach (and perhaps even “personality”) will 
manifest itself equally in the written code and its results, the code itself will naturally 
be more meaningful to other programmers than a general audience that might only get 
the roughest idea of its “mechanisms.” Whether the code adds to an understanding of 
the work also varies substantially from case to case. One might speculate that the 
emphasis that the artists themselves would put on the importance of their code partly 
depends on the nature of their respective work: for example, artists whose work focuses 
on “raw” code (such as many of Graham Harwood’s pieces) might consider the “written 
part” of the project more important than artists whose work is an exploration of visual 
forms, space, and action (such as many of Antoine Schmitt's projects). The presentation 
format of CODeDOC also seems to have imposed some (unintended) editing on the 



artists’ part: in their comments, both Antoine Schmitt (CODeDOC II) and Camille 
Utterback (CODeDOC I) admitted that they felt compelled to clean up their code before 
presenting it to the public (“I’m one of those people that clean my bathroom if my 
friends are coming over,” as Camille put it). One of the inherent dangers and certainly 
unintended effects of CODeDOC could be the misassumption that the quality of software 
art can be judged according to virtuosity and craftsmanship in the programming of code 
(that is, by criteria such as correctness, maintainability, lucidity, and readability, which 
were outlined by Donald Knuth). One of the beauties of art, no matter what form and 
material it takes, consists in the fact that its success is the result of multiple factors 
that cannot be objectively defined. A viewer could certainly enjoy the works of Leonardo 
da Vinci or Picasso on the basis of their outstanding virtuosity and craftsmanship alone 
(although they have much more to offer), but applying these standards to Duchamp’s 
urinal or Beuys’ “fat and felt” sculptures will presumably not yield relevant results or 
major appreciation. Like any other art form, software art cannot and should not be 
reduced to technical criteria, and the code should be seen as more than simply the 
wheels and gears driving the machine.

As an artistic medium and practice, software art seems to distinguish itself from other 
art forms such as painting, sculpture or film/video. As opposed to other forms of visual 
art, software artists write verbal instructions for their work that can be executed and 
produce anything from visuals to a more abstract communication process (although the 
execution of code still requires various steps of interpretation and compiling and the 
code itself may be mostly a notation of logic). There is a peculiar relationship between 
the mostly hidden backend of code—which constitutes a convergence of language and 
mathematics—and the multi-sensory “display” it can produce: an “identity” in the sense 
of a sameness in different instances (code results), each of which takes a very different 
form yet, on one level, is one and the same. While every art form may be processed 
and mediated in one way or another, it usually does not constitute a fusion of 
fundamentally different “materialities” (in the broadest sense) as software art does. A 
painting or sculpture to a large extent reveals the manifestations of its creation process 
in the finished object—for example, in individual brush strokes or materials—even if the 
art object amounts to something much larger than the sum of its parts. In software art, 
the “materiality” of the written instructions mostly remains hidden. In addition, these 
instructions and notations can be instantaneously activated; they contain and—further 
layers of processing aside—are the artwork itself. While one might claim that the same 
holds true for a work of conceptual art that consists of written instructions, this work 
would still have to be activated as a mental or physical event by the viewer and cannot 
instantaneously transform, transcend, and generate its own materiality.

In the comments accompanying his contribution to CODeDOC II, Antoine Schmitt points 
out that it would be a misleading shortcut to propose that the language in which a 
programmed artwork has been written has anything to do with the “language of 
programmed art”—a language relating to the space, time and action of the work. 
Schmitt makes an important point in that he hints at the multiple layers of “language” 
that a discourse about software art entails: there is the programming language itself (I 
assume that many programmers would argue that the choice of the programming 
language has a substantial effect on the outcome of the artwork); there is the language 
of the written code in the sense of an artistic expression that formulates instructions in 
an individual way (similar to the use of natural language that, despite a given 
vocabulary, grammar and rules, functions as a form of personal expression); and there 
is the aesthetic “language” of the code’s actions, comparable to the language of painting 
or cinema. At best, CODeDOC can raise some awareness surrounding both the 
construction and perception of software art, and I hope that the pieces created for this 
second round of the project will continue to contribute to an ongoing dialogue.
CODeDOC I:
http://artport.whitney.org/commissions/CODeDOC/
CODeDOC II:



http://www.aec.at/CODeDOCII

John F. Simon, Jr. (USA)
http://www.numeral.com

Annja Krautgasser / Rainer Mandl (A):
http://www.vidok.org
http://www.vidok.org

epidemiC (I):
http://epidemic.ws/

Joan Leandre (E)
http://www.retroyou.org/

Jaromil (A/I)
http://korova.dyne.org/

Ed Burton (UK)
http://soda.co.uk/

Antoine Schmitt (F)
http://www.gratin.org/as/


